Российская Арктика
Научный журнал
ISSN(Online): 2658-4255 
Импакт-фактор РИНЦ (2 года) - 1,154
ВАК - К 1
ОТПРАВИТЬ СТАТЬЮ
101000, Москва, Армянский пер., 
д. 9 стр. 1, оф. 319/44

  • English
Русский
О журнале
  • О журнале
  • Рецензирование
  • Издательская этика
  • Редакционная коллегия
  • Попечительский совет
  • Авторы статей
  • Правила оформления
  • Рецензентам
  • Документы
  • Отправить заявку
Свежий номер
Статьи
Базы данных
Архив
  • Библиотека
  • Специальные выпуски
  • 2018
  • 2019
  • 2020
  • 2021
  • 2022
  • 2023
Индексирование и архивирование
Лента новостей
Услуги
Контакты
    Российская Арктика
    • English
    Русский
    • О журнале
      • Назад
      • О журнале
      • О журнале
      • Рецензирование
      • Издательская этика
      • Редакционная коллегия
      • Попечительский совет
      • Авторы статей
      • Правила оформления
      • Рецензентам
      • Документы
      • Отправить заявку
    • Свежий номер
    • Статьи
    • Базы данных
    • Архив
      • Назад
      • Архив
      • Библиотека
      • Специальные выпуски
      • 2018
      • 2019
      • 2020
      • 2021
      • 2022
      • 2023
    • Индексирование и архивирование
    • Лента новостей
    • Услуги
    • Контакты
    101000, Москва, Армянский пер., 
    д. 9 стр. 1, оф. 319/44

    info@arctic-centre.com
    • Главная
    • Публикации
    • Статьи
    • Применение гидролокационного комплекса при обследовании нижней поверхности льда

    Применение гидролокационного комплекса при обследовании нижней поверхности льда

    27 Декабря 2019 0:37
    // Океанология

    Хотченков С.В.,  Гаврилов Ю.Г.,  Наумов М.Ю. 

    DOI: 10.24411/2658-4255-2019-10072

    Статья получена: 16.12.2019 –  Отправлена на рецензирование: 17.12.2019 – Одобрена к публикации: 22.12.2019 – Опубликована: 27.12.2019

    html.png    PDF.png    XML.png    ENG.png

    Библиографическая ссылка: 
    Хотченков С.В., Гаврилов Ю.Г., Наумов М.Ю. Применение гидролокационного комплекса при обследовании нижней поверхности льда / С.В. Хотченков, Ю.Г. Гаврилов, М.Ю. Наумов // Российская Арктика. – 2019. – №7. - С. 21-27

    В статье рассматриваются методические вопросы применения гидролокационного метода определения формы нижней поверхности льда, непосредственно с поверхности льда в условиях Арктики, как комплексного решения при морфометрических исследованиях. Приведены результаты опытного использования гидролокационного метода на примере измерений в море Лаптевых.

    Ключевые слова: морфометрические параметры льда, гидролокационные исследования, подводная съёмка, гидролокатор, торосы, айсберги.

    Введение
    Объявленные приоритеты развития промышленной добычи в морских районах Арктики [1] требуют представления об особенностях формирования и развития ледового покрова и его влиянии на объекты промышленного комплекса. Одним из видов комплекса работ являются морфометрические исследования торосов в припайной и дрейфующей части ледового покрова Арктических морей. На данный момент при помощи аэрофотосъёмки с пилотных и беспилотных аппаратов, тахеометрических измерений возможно точное и оперативное построение поверхности надводной части торосов и айсбергов. Применение морфометрических измерений [2], исследований при помощи термобурения [3] и георадиолокационных методик [4] непосредственно на льду, позволяют сформировать грубый макет как внутренней структуры, так и нижней поверхности торосов. Точность при описании нижней поверхности указанными методами достигает метровых значений и не отвечает однозначно об особенностях формирования торосов и торосистых образований.
    Достижение при моделировании нижней поверхности торосов такой же точности, как при описании верхней (надводной) части торосов возможно лишь при их комплексном обследовании гидролокационными и телевизионными установками [5]. Особенности методики применения комплексного подхода рассматриваются на примере использования гидролокатора 881 в специально разработанном комплекте сотрудниками ФГБУ «ААНИИ».

    Технические средства
    Гидролокационный комплекс представляет собой профилирующий гидролокатор кругового обзора Imagenex 881A (ГКО), оборудованный приводом вращения Azimuth Drive и модулем ориентации. В отличие от многолучевых гидролокационных систем, использование однолучевого излучателя (рис.1) позволяет оперативно производить обработку полученных данных и переводить сигнал в цифровой вид.


                         Рисунок_01_рус.png

    Рисунок 1. Схема работы однолучевого гидролокатора.

    Комплекс достаточно компактен (рис. 2), позволяет проводить измерения с глубины до 100 м, с охватом до 200 м по всей сфере с точностью до 1 см. Для погружения аппарату требуется майна 0.25 м2. В качестве пульта управления (далее ПУ), используется защищенный ноутбук Panasonic, подключение осуществляется по com-порту 485 RS, что обеспечивает высокоскоростной режим передачи данных. Питание осуществляется от постоянного источника или генератора с преобразователем на 24 V.

                                                           Рисунок_02.png

    Рисунок 2. Пункт наблюдения ГЛК перед погружением.

    Методика проведения работ
    На первом этапе, в зависимости от поставленной задачи по обследованию ледовых образований, оборудуется пункт управления (ПУ) и подготавливаются майны для погружений. В зависимости от протяженности полигона и массивности тороса оборудуется две и более майны. В среднем подготовка полигона занимает от 40 минут и более, при средней толщине льда менее метра, наличии транспорта для подвозки оборудования и количестве майн от двух штук.

    На втором этапе для получения представления о массивности и протяженности подводной части тороса в первую очередь запускается подводный телевизионный осмотровый комплекс (ПТОК), в данном случае использовался комплекс на базе телевизионного аппарата (ТПА) «СуперГНОМ Про» (рис. 3). В ходе обследования, ТПА по установленному направлению и удалению от точки погружения выводится на линию профиля, после чего производится обзор вдоль профиля для определения значений глубины киля. При большом удалении от объекта обследования или его большой протяженности, обследование проводится с двух точек, в среднем на удалении 50-200 м. По результатам телевизионного обследования (скорость течения, максимальный киль, среднее значение киля, протяжённость подводной части тороса) выбираются места для дополнительных майн. В среднем, при дооборудовании одной майны и проведении обследования с двух точек, требуется от часа и более.

                                                          Рисунок_03.png

    Рисунок 3. ТПА «СуперГНОМ Про» перед погружением.

    По данным STD-зондирования вычисляются значения скорости звука в воде на разных горизонтах, для ввода поправок при работе ГЛК.

    На третьем этапе выполняется развёртывание, тестирование и постановка приборов ГЛК в заданных точках наблюдения (майнах). В ходе тестирования вводятся поправки на изменение скорости звука (для учёта изменения скорости звука на горизонте съёмки) и магнитного склонения. Для ввода поправок требуются данные по вертикальному профилю (до ста метров) скорости звука, получаемые из результатов зондирования или данных ROV-систем. Так как планируемые работы, в том числе, проводятся на дрейфующем льду, перед каждым погружением требуется калибровка компаса ГЛК. При работе на припае достаточно калибровки перед каждой сменой района исследования.

    В связи с отработкой методики проведения съёмки нижней поверхности льда, продолжительность каждой съёмки варьируется от часа до двух часов, в среднем с одной точки проводится две съёмки. Каждая из точек погружения привязывается позже к плану тахеометрической съёмкой, позволяя далее получить единый массив данных ГЛС. В общей сложности планируется на гидролокационное обследование на один полигон от двух дней и более, в зависимости от протяженности (менее 120 м), массивности объекта, толщины льда (менее метра), наличии транспорта для перевозки ГЛК.

    На четвёртом этапе производится обработка полученных данных с ПТОК и ТПА. Результаты телевизионной съёмки ПТОК монтируются для просмотра и снабжаются поясняющими комментариями. В зависимости от продолжительности (менее часа) телевизионной съёмки просмотр и монтаж занимают от 4 часов и более.

    Результаты гидролокационного обследования предварительно просматриваются, для выявления ошибок при производстве записей, и переносятся на внешний носитель для дальнейшей обработки по возвращению из экспедиции. Обработка данных требует привлечения специального программного обеспечения, позволяющего из автоматически сформированного массива данных гидролокационной съёмки (далее ГЛС) выделить данные по распределению глубин нижней поверхности заданного ледового образования, приведённые к горизонтальной плоскости в единой системе локальных координат.

    Примеры использования ГЛК на НИС Мыс Баранова.
    В качестве экспериментальной площадки для отработки методики комплексного обследования ледяных объектов с использованием ГЛК используется НИС «Ледовая база Мыс Баранова». НИС находится на побережье пролива Шокальского на высоком восточном берегу о. Большевик арх. Северная Земля южнее мыса Баранова и имеет координаты: 79°17’ с.ш., 101°37’ в.д. [6]. Около НИС расположен ледник Мушкетова и южнее – ледник Семенова Тянь-Шанского. На акватории, в припайном льду на зиму остаются вмороженными в лёд множество айсбергов средней величины и их обломки. Близко проходит кромка припайного льда, за которой начинается дрейфующий лёд, в результате динамических процессов происходит образование торосов. На севере пролива Шокальского открывается заприпайная полынья, с образованием участков открытой воды и молодых льдов.

    В ходе сезонных работ (апрель – май 2016 г.) был исследован обломок айсберга (рис. 4), расположенный в припае на удалении 2,5 км от береговой черты. Айсберг был расположен на изобате 22 м, киль айсберга лежал на дне с ярко выраженной экзарацией донной поверхности. Общее время работы с ГЛК на объекте составило 4 дня, была выполнена комплексная съёмка с четырёх точек. Результаты гидролокационных съёмок с нескольких точек, после оперативной обработки в специальной программе WIN881A Digital Sonar, были представлены в цифровом виде как облако точек в локальных координатах.

                                           Рисунок_04.png
                                                                   

    Рисунок 4. Обломок айсберга: надводная и подводная части.

    В специализированном ПО Surf3D была произведена привязка результатов съёмки к единой локальной системе координат, отфильтрованы и удалены данные донной поверхности и сформированы файлы в текстовом виде, содержащие трёхмерные координаты точек нижней поверхности айсберга, что позволило выразить привязанный к рельефу надводной части рельеф нижней поверхности в заданных координатах (рис. 5), как результат обработки в ПО Golden Software Surfer.

                                                        Рисунок_05_рус.png

                                                         Рисунок 5. Рельеф подводной части обломка айсберга по результатам ГЛС.

    В ходе сезонных работ (март – апрель 2018 г.) был исследован торос, сформировавшийся в зоне взаимодействия припая и дрейфующих масс в период намерзания. Съёмка ГЛК была выполнена за один день с одной точки, с набережной стороны тороса. Одновременно исследование тороса производилось методикой термобурения, позволяющей получить данные о плотности льда в торосе в узлах регулярной сетки, что в дальнейшем позволило уточнить данные по точности измерения киля тороса данными методами.

    По результатам съёмки ГЛК, также после обработки в специализированном ПО Surf3D, были сформированы файлы данных в текстовом виде, содержащие трёхмерные координаты точек нижней поверхности тороса и прилегающей области в локальных координатах. При построении плана (рис. 6) в ПО Golden Software Surfer, данные были нанесены в виде рельефа нижней поверхности льда.

                                                                      Рисунок_06_рус.png

                                                                          Рисунок 6. План тороса и рельеф нижней поверхности тороса.

    Перспективы использования
    На основании сравнения классических методик получения морфометрических характеристик торосов, айсбергов и ровного льда (механическое бурение, термобурение) с результатами метода гидролокационного обследования выработана общая методика определения объёма, массы и таких физико-механических характеристик торосов и стамух, как внутреннее строение, распределение массы, прочности, температуры, солёности и плотности льда в торосистых образованиях [7].

    Использование методики ГЛС как в комплексе, так и самостоятельно, позволяет с высокой точностью получить данные линейных характеристик на заданной площади обследования нижней (подводной) поверхности льда и ледяных образований, соответствующие точности измерения надводной части современными методами с помощью GPS-систем и электронных тахеометрических систем в цифровом виде.

    Список литературы
    1. Стратегия развития Арктической зоны Российской Федерации и обеспечения национальной безопасности на период до 2020 года., утверждено 18.09.2008 N Пр-1969
    2. Смирнов В.Н., Шушлебин А.И., Ковалёв С.М., Шейкин И.Б. Методическое пособие по изучению физико-механических характеристик ледяных образований как исходных данных для расчёта ледовых нагрузок на берега, дно и морские сооружения.
    СПб. ААНИИ. 2011, 178 с.
    3. Морев В.А., Морев А.В., Харитонов В.В. Способ определения структуры торосов и стамух, свойств льда и границы льда и грунта. Патент на изобретение № 2153070 от 20.07.2000.
    4.     СП 11-114-2004. Инженерные изыскания на континентальном шельфе для строительства морских нефтегазопромысловых сооружений. Госстрой России. М.: Производственный и научно-исследовательский институт по инженерным изысканиям в строительстве (ФГУП «ПНИИИС») Госстроя России, 2004, 88 с.
    5. Yevgeny U. Mironov, Roman B. Guzenko, Viktor S. Porubaev, Victor V. Kharitonov, Stepan V. Khotchenkov and Aleksandr V. Nesterov Morphometric Parameters of Stamukhas in the Laptev Sea, International Journal of Offshore and Polar Engineering, ISOPE-2019, Honolulu, Hawaii, USA, 2019.
    6. Итоги работ на НИС «Ледовая база «Мыс Баранова» в период октябрь 2016 –сентябрь 2017 гг. Расположены на: http://www.aari.ru/news/text/2017/%D0%9D%D0%98%D0%A1%20%D0%9C%D0%91%202017%20%D0%B8%D1%82%D0%BE%D0%B...
    7. Способ определения физико-механических и морфометрических характеристик ледовых торосистых образований. ФИПС, Москва; Заявка на патент 2019133637 от 22.10.2019

    References:

    1.     Strategiya razvitiya Arkticheskoj zony Rossijskoj Federacii i obespecheniya nacional'noj bezopasnosti na period do 2020 goda., utverzhdeno 18.09.2008 N Pr-1969
    2.     Smirnov V.N., SHushlebin A.I., Kovalyov S.M., SHejkin I.B. Metodicheskoe posobie po izucheniyu fiziko-mekhanicheskih harakteristik ledyanyh obrazovanij kak iskhodnyh dannyh dlya raschyota ledovyh nagruzok na berega, dno i morskie sooruzheniya. SPb. AANII. 2011, 178 s.
    3.     Morev V.A., Morev A.V., Haritonov V.V. Sposob opredeleniya struktury torosov i stamuh, svojstv l'da i granicy l'da i grunta. Patent na izobretenie № 2153070 ot 20.07.2000
    4.     SP 11-114-2004. Inzhenernye izyskaniya na kontinental'nom shel'fe dlya stroitel'stva morskih neftegazopromyslovyh sooruzhenij. Gosstroj Rossii. M.: Proizvodstvennyj i nauchno-issledovatel'skij institut po inzhenernym izyskaniyam v stroitel'stve (FGUP «PNIIIS») Gosstroya Rossii, 2004, 88 s.
    5.     Yevgeny U. Mironov, Roman B. Guzenko, Viktor S. Porubaev, Victor V. Kharitonov, Stepan V. Khotchenkov and Aleksandr V. Nesterov Morphometric Parameters of Stamukhas in the Laptev Sea, , International Journal of Offshore and Polar Engineering, ISOPE-2019, Honolulu, Hawaii, USA, 2019.
    6.     Itogi rabot na NIS «Ledovaya baza «Mys Baranova» v period oktyabr' 2016 –sentyabr' 2017 gg. Available at: http://www.aari.ru/news/text/2017/%D0%9D%D0%98%D0%A1%20%D0%9C%D0%91%202017%20%D0%B8%D1%82%D0%BE%D0%B3%D0%B8.pdf
    7.     Sposob opredeleniya fiziko-mekhanicheskih i morfometricheskih harakteristik ledovyh torosistyh obrazovanij. FIPS, Moskva; Zayavka na patent 2019133637 ot 22.10.2019.


    Теги
    лед гидролокационные исследования айсберги

    Наумов М.Ю.

    Арктический и антарктический научно-исследовательский институт, Санкт-Петербург


    naumike@rambler.ru
    Гаврилов Ю.Г.

    Арктический и антарктический научно-исследовательский институт, Санкт-Петербург


    gawr@list.ru
    Хотченков С.В.

    Арктический и антарктический научно-исследовательский институт, Санкт-Петербург


    hody@aari.ru
    • Комментарии
    Загрузка комментариев...

    Назад к списку Следующая статья
    Рубрики
    • Новости62
    • Антропология1
    • Геофизика0
    • Гидрология4
    • Гляциология0
    • Здравоохранение29
    • Метеорология10
    • Общая биология1
    • Океанология23
    • Транспорт7
    • Экология11
    • Экономическая география10
    • Электроэнергетика15
    • Биогеография1
    • Геоэкология2
    • Редакционные статьи49
    • Научно-популярные статьи9
    Это интересно
    • Информативность факторов, формирующих долгопериодные колебания ледовитости отдельных районов Баренцева моря
      Информативность факторов, формирующих долгопериодные колебания ледовитости отдельных районов Баренцева моря
      26 Мая 2023
    • Оценка изменчивости соотношения концентраций общего азота и общего фосфора в маргинальных фильтрах приливных устьев рек Белого и Баренцева морей
      Оценка изменчивости соотношения концентраций общего азота и общего фосфора в маргинальных фильтрах приливных устьев рек Белого и Баренцева морей
      27 Декабря 2022
    • Современные особенности ледовых условий на пути плавания в Татарском проливе Японского моря
      Современные особенности ледовых условий на пути плавания в Татарском проливе Японского моря
      28 Июля 2022
    • К оценке сроков полного очищения морей Российской Арктики от льда в летний период
      К оценке сроков полного очищения морей Российской Арктики от льда в летний период
      26 Января 2022
    • Особенности ледовых процессов в осенний период 2021 г. в морях Российской Арктики и оценка оправдываемости ледовых прогнозов
      Особенности ледовых процессов в осенний период 2021 г. в морях Российской Арктики и оценка оправдываемости ледовых прогнозов
      23 Декабря 2021
    • Многолетняя изменчивость толщины припая в море Лаптевых по данным полярных станций
      Многолетняя изменчивость толщины припая в море Лаптевых по данным полярных станций
      27 Апреля 2021
    • Обзор методов и основных результатов измерения толщины морского льда в Арктике
      Обзор методов и основных результатов измерения толщины морского льда в Арктике
      5 Апреля 2021
    • Сравнение самостоятельного движения и движения под проводкой ледокола газовозов типа «Yamalmax»
      Сравнение самостоятельного движения и движения под проводкой ледокола газовозов типа «Yamalmax»
      29 Декабря 2020
    • Перспективы применения нейросетей для решения проблем ННН-рыболовства и пиратства в Арктической зоне России
      Перспективы применения нейросетей для решения проблем ННН-рыболовства и пиратства в Арктической зоне России
      29 Декабря 2020
    • Особенности распределения айсбергов по данным судовых наблюдений в Карском море в 2004-2019 гг.
      Особенности распределения айсбергов по данным судовых наблюдений в Карском море в 2004-2019 гг.
      15 Сентября 2020
    • Современное состояние и перспективы исследований ледяного покрова морей  российской Арктики
      Современное состояние и перспективы исследований ледяного покрова морей российской Арктики
      10 Сентября 2020
    • Изменчивость положения границ старых льдов в весенний период и остаточных льдов в осенний период в Северном Ледовитом океане в текущем климатическом периоде
      Изменчивость положения границ старых льдов в весенний период и остаточных льдов в осенний период в Северном Ледовитом океане в текущем климатическом периоде
      9 Июля 2020
    • Межгодовая и сезонная изменчивость площади льдов в Северном Ледовитом океане по данным спутниковых наблюдений
      Межгодовая и сезонная изменчивость площади льдов в Северном Ледовитом океане по данным спутниковых наблюдений
      30 Декабря 2019
    • Методика составления ледовых карт ААНИИ
      Методика составления ледовых карт ААНИИ
      27 Декабря 2019
    • Изменение адвекции тепла в Баренцевом море
      Изменение адвекции тепла в Баренцевом море
      21 Марта 2019
    • Долгосрочный прогноз площади остаточных льдов в сентябре в Северном Ледовитом океане
      Долгосрочный прогноз площади остаточных льдов в сентябре в Северном Ледовитом океане
      13 Сентября 2018
    • Снежницы на поверхности льда в летний период и их связь с климатическими изменениями в Арктике
      Снежницы на поверхности льда в летний период и их связь с климатическими изменениями в Арктике
      13 Сентября 2018
    • Ледовые условия плавания в арктическом бассейне в летний период 2018 года
      Ледовые условия плавания в арктическом бассейне в летний период 2018 года
      13 Сентября 2018
    • Судовой телевизионный комплекс – реализация автоматизированной системы натурных измерений толщины морского льда
      Судовой телевизионный комплекс – реализация автоматизированной системы натурных измерений толщины морского льда
      13 Сентября 2018
    • Ледяные дрейфующие острова в Арктике
      Ледяные дрейфующие острова в Арктике
      13 Сентября 2018
    Облако тегов
    Covid-19 в Арктике scopus ААНИИ айсберги аморфные сплавы аналитика Антарктида арктические моря Арктический бассейн Арктический совет Арктический Совет Атлантика Атомная Энергетика Баренцево море безопасность Белое море биота биотехнологии ВАК вахтовые поселки водоснабжение воздушная линия воздушная линия электропередачи возобновляемые источники энергии газовоз геополитика гидролокатор гидролокационные исследования гололёдно-изморозевые отложения горнодобывающая и металлургическая промышленность Государственная Дума грозозащитный трос грозозащитный трос с встроенным оптическим кабелем грузопоток дикоросы добыча нефти и газа добыча угля дрейфующая станция «Северный Полюс» Енисей заболеваемость загрязнение здоровье здравоохранение индуктивное сопротивление контура интервью Карельская Арктика Карское море Кира Змиева клеточная биология климат лед ледокол Ледокол «Красин» Ленский клуб международные отношения мероприятия метеорология микрогрид мнение молодежное сотрудничество море Лаптевых морские экспедиции морской лёд наведенный ток нагревательные элементы народы Севера нефтегазовая отрасль образование отходы парниковый эффект пиратство питание подстанция полярные исследования Полярный кодекс председательство премия продовольствие производственная вибрация профессиональная патология профилактика профилактический обогрев профилактический подогрев радиация радиоактивные отходы Республики Саха рецензирование санитарно-эпидемиологическое благополучие северный завоз Северный Ледовитый океан Северный морской путь сжиженный природный газ снежницы Совет Федерации социально-экономическое развитие судостроение судоходство ток толщина припая толщиномер топливо транспорт трубопровод туризм условия труда устойчивое развитие форум шельфовый ледник Шпицберген экологический контроль экологический мониторинг экологическое законодательство экология экономическая политика экосистема экспедиция экспертное мнение электромагнитное поле электроэнергетика электроэнергия энергетика энергопотребление энергоснабжение ядерное топливо
    Подписывайтесь на новости:
    Лицензия Creative Commons © 2023 Все права защищены.
    Все публикации на сайте Российская Арктика доступны по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

    Политика конфиденциальности
    Наши контакты
    info@arctic-centre.com
    101000, Москва, Армянский пер., 
    д. 9 стр. 1, оф. 319/44

    Оставайтесь на связи
    Мы используем файлы cookie и сбор персональных данных, чтобы предоставить вам лучший пользовательский сервис и показывать вам индивидуальные предложения на нашем сайте. Продолжая просматривать наш веб-сайт, вы соглашаетесь c использованием cookie и обработкой персональных данных. Узнать больше